DS Bioperl cours

Utiliser Perl et la bibliothéque Bioperl pour chacune des questions. Les exercices sont indépendants
les uns des autres. Je ne tiendrai pas compte de 1’utilisation des « use » (donc ni des « my ») dans les
scripts perl.

1) Quel est I’intérét de Bioperl par rapport a du Perl ?
Estimation : 1 minute - 0,25 point

2) Convertisser en Bioperl le script suivant : Estimation : 7 minutes — 1,75 points

use strict;

use warnings;

my $seq=$ARGV[0];

chomp($seq);

my @split=split(

my $chaine="";

foreach (@split){
$chaine=$_$chaine;

$seq);

}

if ($seq=~m /" (A T|G|C)*$/{
print "ADN\n".$seq."\n";
print $chaine;

}

elsif ($seq=~m/"(A|U|G|C)*$/){
print "ARN\n".$seq."\n";
print $chaine;

}

else{
print "Protein\n".$seq."\n";

}

3) Convertisser en Bioperl le script suivant : Estimation : 7 minutes — 1,75 points
N’écrivez pas la séquence (ATG***) en enticre
use strict;
use warnings;
my $seq="TGTGTGTGAATTCATGCATATGTGAATTCTATGCATGCAA";
my $coupe="GAATTC";
my $coupe_avant="G";
my $coupe_apres="AATTC";
my $enzyme="EcoRI";
my @fragments=split($coupe,$seq);
if ($#fragments>=1){

my $premier=shift(@fragments);

my $dernier=pop(@fragments);

print $premier.$coupe_avant."\n";

foreach (@fragments){

print $coupe_apres.$_S$coupe_avant."\n";

}

print $coupe_apres.$dernier"\n";
}
else{

print $seq."\n";
}

1/5

4) Convertisser en Bioperl le script suivant :
N’écrivez pas la séquence (ATG***) en enticre

use strict;
use warnings;
my $sequence="";
my $nom_sequence="";
open (E"sequences.fa");
my $bool=0;
while (<F>){
my $ligne=$_;
chomp($ligne);
if ($ligne=~m/">/){
$bool=0;
}

if ($ligne=~m/ENST00000512366.1/){
$bool=1;
}
if ($bool==1){
print $ligne;
}
}
close(F);

Estimation : 7 minutes — 1,75 points

5) Lire le fichier blast « seq.bls » et afficher les séquences requétes qui possédent un hit dont le
nom contient « deshydrogenase ». Précision : une séquence requéte doit étre affichée qu'une
seule fois méme si elle a plusieurs hits « deshydrogenase ». Estimation : 12 minutes - 2,5 points

6) Pour une séquence contenue dans le fichier fasta « file.fasta » compter le nombre de mots de

taille 1 jusqu’a 10. Estimation : 12 minutes - 2,5 points

Affichage voulue :
Mot de taille : 1
G225

C 260

A 342

Mot de taille : 2

Mot de taille : 10
GGGCACCTTC 1

7) Créer une séquence puis la traduire une séquence en fonction des parameétres envoyés dans
le script : le premier parameétre va contenir : « + » ou « - » afin de choisir le sens du brin (sens
ou antisens), le second parametre va contenir : 1,2 ou 3 afin de choisir la cadre de lecture.

Estimation : 12 minutes - 2,5 points

2/5

8) Corriger les erreurs dans ce script (les use sont tous bons) : Ecrire un programme qui permet de
convertir plusieurs fichiers au format Genbank dans un seul fichier fasta. Ce script doit lire un fichier
« liste.txt » contenant les noms des fichiers genbank a convertir. Un fichier genbank contient une
seule séquence fasta. Le nom de fichier fasta doit avoir le prefix « short » ou « long » en fonction de
la taille de la séquence : « short leptine.fasta », « long_sequence.fasta ». « short » veut dire que la
séquence a une taille inférieure a la taille moyenne de toutes les séquences, « long » que la séquence
a une taille supérieure ou égale a la taille moyenne de toutes les séquences.

Estimation : 16 minutes - 3,5 points

« liste.txt » contient un nom de fichier genbank par ligne :
sequence.gb

leptine.gb

Script :

use strict;

use warnings;

use Bio::SeqlO;

open (F'liste.txt");
while (<F>){
my $file=$_;
chomp($file);
my $in=Bio::SeqlO->new(-file=>$file.".gb",-format=>"genbank");

}
my $moyenne=0;
open (F'"liste.txt");
while (<F>){
my $file=$_;
chomp($file);
my $in=Bio::SeqlO->new(-file=>$file.".gb",-format=>"genbank");
my $prefix="long";
my $seq = $in->next_seq;
if ($seq<$moyenne){
$prefix="short";
}
my $out=Bio::SeqlO->new(-file=>
$out->write_seq($seq);

nn

Sprefix."_".$file.".fa",-format=>"fasta");

3/5

9) Corriger les erreurs dans ce script (les use sont tous bons) :
Estimation : 16 minutes - 3,5 points

Objectif du script
Afin de rechercher les similarités avec 1’outil BLAST entre un fichier contenant une seule séquence
(pour que c¢a soit plus simple) en format fasta et une base de données, le terminal doit afficher chaque
nom des fichiers fasta contenue dans le dossier « seq » pour que 'utilisateur puisse choisir le fichier
de son choix en entant le chiffre correspondant au fichier. Si 1’utilisateur fait un choix impossible il
faut afficher « Choix impossible » et reproposer les choix (rappel perl : il faut faire une boucle). Par
exemple :
Choisissez un fichier séquence :
I)seq 1.fa
2)seq 2.fa
[L’utilisateur doit taper 1 ou 2 puis « entrer »]
#Si il tape 4 :
Choix impossible
Choisissez un fichier séquence :
1)seq 1.fa
2)seq 2.fa
[L’utilisateur doit taper 1 ou 2 puis « entrer »]
Puis, lancer la comparaison de type « blastn » entre le fichier contenant une séquence sélectionnée et
la base de données « human ». Le fichier résultat doit porter le nom de la séquence requéte (query)
suivi de « _ » suivi du nom de la base de données utilisée suivi de « .bls » (exemple :
«unknownl human.bls »).
En lisant les résultats de blast en Bioperl (le format par défaut d’un fichier résultat de blastn est « blast
»), annoter la séquence requéte grace au/aux HSP de son premier hit avec les parameétres suivants :
primary_id « HIT », position start et la position end du/des HSP, le nom du hit en tag « name ». Enfin,
imprimer la séquence annotée dans une fiche Genbank portant le nom de la séquence requéte (query)
suivi de « _ » suivi du nom de la base de données utilisée suivi de « .gb » (exemple : «
unknownl human.gb »).

4/5

use strict;
use warnings;
use Bio::Tools::Run::StandAloneBlastPlus;
my @lis="ls seq’;#permet de récupérer les noms des fichier du répertoire « seq » dans le
#tableau @lis
my %fich_sequences;
my $i=1;
foreach (@lis){
chomp($_);
$fich_sequences{$i}=$_;
$i++;
}
print "Choisissez un fichier de séquence :\n";
my $stdin_seq;
while (1){
foreach (sort keys %fich_sequences){

}
$stdin_seq=<STDIN>;
chomp($stdin_seq);
if (defined($fich_sequences{$stdin_seq})){#defined() renvoi vrai si la clé existe
#dans le tableau associatif
last; #permet de sortir de la boucle

}

}
my $infasta=Bio::Seql0->new('seq/".$fich_sequences{$stdin_seq});
my $sequence_query=Bio::SeqlO->new(-seq =>'TATA’);
my $nom="human";
my $fac=Bio::Tools::Run::StandAloneBlastPlus -> new(-db_name =>$nom);
$fac -> blastn(-query => "seq/".$fich_sequences{$stdin_seq},
outfile => $sequence_query."_".$nom.".bls");
$fac -> cleanup;
my $in = Bio::SearchlO->new(-format => 'blast’, -file => $sequence_query->display_id."_".$nom.".bls");
my $result=$in->next_hit;
my $hit=$result->next_hsp ;
my $out=Bio::Seql0O->new(-file => '>"$result->query_name.
while (my $hsp=$hit->next_result){
my $feat=new Bio::SeqFeature::Generic();
$feat->add_tag_value('name’,$hit->name);
$feat->start($hsp->start);
$feat->end($hsp->end);
$feat->primary_tag("HIT");

$nom.".gb",-format=> "GenBank");

}

$out->write_seq($sequence_query);

5/5

